
www.manaraa.com

Ph.D. Thesis ProposalVolunteer ComputingLuis F. G. Sarmenta(lfgs@lcs.mit.edu)MIT Laboratory for Computer ScienceCambridge, MA 02139May 21, 1997*** DRAFT: DO NOT DISTRIBUTE ***AbstractThe explosive growth of interest in platform-independent programming languages for theWorld-Wide-Web, such as Sun Microsystems' Java, is opening exciting new possibilites inparallel computing. This thesis will present and investigate the idea of volunteer computing,which will allow people to volunteer their computers' processing power towards solving alarge parallel problem by simply visiting a web page. Because it requires no prior humancontact and very little technical knowledge from the client user, volunteer computing makesit possible to very easily build very large networks of computers working together in parallel.This makes supercomputing more readily accessible and \closer to the masses", and at thesame time makes it possible to achieve new heights in performance through the formationof parallel computing networks involving many thousands, or even millions, of computersdistributed around the world.This paper proposes thesis research which aims to expose and investigate the issues andproblems involved in implementing and using volunteer computing by developing a workinggeneral-purpose volunteer computing programmingand execution environment based on Javaand using it to create applications of di�erent types. In this paper, we identify some keyissues and discuss ways in which they can be handled.1 IntroductionThe introduction of Java by Sun Microsystems has made it possible to place platform-independentexecutable programs called applets on the Web, and let Internet users execute them on theirown machines without needing anything more than a Java- capable browser. Applets are nowbeing used by an increasingly large number of people and organizations to enhance their webpages with such things as animation, interactive demos, user- friendly forms, etc. So far, how-ever, most of these uses have only concentrated on providing local usefulness|that is, additionalfunctionality or ease-of-use for the client user, but few additional bene�ts for anyone else. Theability of applets to o�-load the server by doing computation on the client's machine, has eitherbeen unused, or used only for doing computation relevant to the client alone.This paper discusses potentials for this unexploited capability of Java, and proposes practi-cal research on a novel form of parallel computing called volunteer computing . The idea behindvolunteer computing is to allow users from anywhere on the Internet to join in the solving ofa big parallel problem by simply using a Java-capable browser and visiting a web site. Be-cause it requires no prior human contact and very little technical knowledge from the client1

www.manaraa.com

user, volunteer computing makes it possible to very easily build very large parallel computingnetworks. Potentially, such a network can involve thousands, or even millions, of computersdistributed around the world, making it possible to achieve performance levels far beyond thatof any current supercomputer. And, since volunteer computing does not require new hardwareto be purchased, it can provide a�ordable supercomputing capabilities even to �nancially- con-strained organizations such as small universities and universities and companies in developingcountries. In fact, since volunteer computing makes it easy for organizations to pool togethertheir resources, it opens new possibilities for cooperative and collaborative research betweeninstitutions around the world.This paper proposes a doctoral thesis project which aims to develop a working and usablesystem that would allow people to develop basic volunteer computing systems, as well as serveas groundwork for further research in the area. In the process of developing such a system,several important issues and problems will be addressed and investigated. These are discussedin the rest of this paper.Section 2 describes in more detail the motivations for implementing volunteer computing.Section 3 gives an overview of related work already done or currently in progress, and discussesthe relationships between the proposed thesis research and these other works. A more detaileddescription of these works is provided in the Appendix. Section 4 discusses the forseeableproblems and issues that need to be addressed, and proposes possible directions for researchwork. Section 5 presents a tentative schedule for addressing these issues and developing aworking volunteer computing system. Finally, we conclude with a short summary in Section 6.2 Motivations2.1 Current SystemsVolunteer computing is actually just a new variation on an old idea: that of using a networkof workstations, or NOW, to solve a parallel problem. The idea of NOWs �rst became popularbecause it allowed people to take advantage of their existing (and mostly- idle) workstations,enabling them to do parallel processing without having to purchase an expensive supercomputer.Global- scale NOWs, employing computers geographically distributed around the world andcommunicating through the Internet, have been used with great success to solve large parallelproblems as far back as the early 90's [?, ?, ?], and until today [?, ?].Unfortunately, many, if not most, of these projects have used ad hoc software systems.Typically, a subsystem for providing communication and coordination between machines inthe NOW had to be developed mostly from scratch as part of each project. Furthermore, inmany cases, the systems are not even fully automatic. Participants have to manually requestjobs, load them into their computers, execute them, and again manually submit the results[?]. Thus, while these software systems can and have been used for NOWs containing severalthousands of workstations, doing so requires a large amount of human e�ort in terms of settingup, coordinating, and administering the system.In recent years, this situation has been improved by the development of general-purpose par-2

www.manaraa.com

allel processing systems such as PVM [1] and MPI [?].1 In such systems, the amount of manualwork required is reduced signi�cantly by the runtime system, which takes care of such things asautomatically executing the appropriate code on each of the processors involved, keeping trackof existing processors, routing and delivering messages between processors, performing broad-casts and barrier synchronization, etc. At the same time, programming is made much easier bya general-purpose applications programming interface (API) which hides most of the detail ofthe runtime system, and allows the user to write parallel programs for NOWs using a relativelysimple high-level message-passing model.2 All this allows programmers to not worry aboutthe low-level details of communication and coordination between the processors, and insteadconcentrate on writing applications.2.2 Problems with Current SystemsAlthough systems like PVM and MPI make programming and setting-up NOWs signi�cantlyeasier that it was with the earlier ad hoc systems, setup requirements still impose practicallimits on the size of NOWs that can be used with these systems. In order to perform a parallelcomputation using the popular Parallel Virtual Machine (PVM) library [1], for example, oneneeds to take the following steps:1. Install the PVM daemon on all machines to be used in the computation.2. Compile binaries for each target architecture.3. Distribute these binaries to all the machines (either by explicitly copying them, or by usinga shared �lesystem).4. Provide the owner of the computation with an account and password on all the machines.5. Provide the owner of the computation with remote shell access (i.e., the ability to executeshell functions and programs remotely) on all machines. This is used to execute the PVMdaemon and the application binaries on the remote machine.It is not hard to see that this process not only requires a lot of e�ort on the system adminis-trator's part, but also requires a lot of trust between the involved machines, and consequently,a lot of prior human communication between the administrators of di�erent machines.In contrast, a Java-based implementation of volunteer computing would require very littlee�ort to set-up. The steps above are addressed as follows (for a summary of Java's capabilitiessee section ??):1. Install a Java-capable browser on all machines. Since most popular browsers today supportJava, this is practically a given on any machine with World-Wide-Web access.2. Compile binaries (only once!) into machine-independent Java applet code.1For some examples of applications using PVM and MPI see [?, ?, ?].2In fact, the PVM and MPI APIs were designed to facilitate programming for all kinds of message-passingparallel hardware, not just NOWs. 3

www.manaraa.com

3. Place the Java applet on a web server, and then advertise the web page to potentialvolunteers. Volunteers can automatically download and execute the applet code by simplybrowsing the web page containing the applet.4. The owner of the computation does not need an account on any of the machines, exceptmaybe the server itself.5. There is no need to provide remote shell access to any of the machine, either. The appletis already automatically executed by the browser. Furthermore, unlike with remote shellaccess, the owner of the computation does not get permission to access or execute anythingon the remote machines other than the Java applet itself.Thus, unlike PVM and similar systems, a Java-based volunteer computing system requiresminimal setup and distribution e�ort, minimal technical knowledge on the client side, andminimal security risk.[The following is taken verbatim from an old version of this paper and should be rewritten ordeleted.]The characteristic ease with which a volunteer computing system can be set-up makes itpossible to form very large computing networks without any prior human contact between theowner of the computation and the owners of the volunteer workstations. (In fact, an idealvolunteer computing system would still work even if the server and the client are allowed tomutually distrust each other in the computer security sense.) With volunteer computing, thesetup time for a system is basically limited only by the time it takes to invite people to accessthe home page.From the experience of popular web sites, we know that given enough public interest, it isnot impossible to get thousands, maybe even millions, of clients in a very short time. Duringthe Kasparov-Deep Blue match, for example, the IBM web server dedicated to providing liveupdates on the match received 5 million hits on the �rst day [2].3 Since a user usually generatesmany hits when visiting a web page, this �gure does not mean 5 million users. However, evengenerously allowing for 1,000 hits per user, this still results in 5,000 users in one day| a numbergreater (as far as I know) than the size of the largest NOWs formed to solve a parallel problemto-date.4This ability to very easily construct such truly "massive" world- wide networks-of-workstationsopens up new possibilities in parallel computing, making it possible to consider solving problemstoo large to be considered before. As volunteer computing makes it very easy for people aroundthe world to traverse political and geographic boundaries, and cooperate on achieving a commongoal, it also potentially has signi�cant positive social consequences.3The IBM server actually went down on the �rst day due to the unmanageable demand on it (the site wasoriginally expecting only 200,000 "visits" per day). It was quickly redesigned to handle 400,000 hits per hour,and was successfully used for the rest of the match [2].4The network that factored RSA-129 involved over 1,600 computers [3].4

www.manaraa.com

3 Related Work[This section is taken verbatim from a draft written in October, 1996, and needs to be updated.Notably missing here are the recent results of the work being done by Javelin group at UCSB andthe Charlotte group at NYU.5]3.1 Very Recent WorkIn early September 1996, a number of papers were presented at the ACM SIGOPS EuropeanWorkshop [18] that are likely to be of relevance to volunteer computing research. The ATLASsystem by Baldeschwieler, Blumofe, and Brewer [19] uses techniques developed for Cilk [20] withJava to create a Java-based NOW system with e�cient thread- scheduling. The ParaWeb projectby Brecht, et al. [21] presents another Java-based NOW system employing a parallel class librarythat allows threads to be executed in parallel on several Java virtual machines. Both ATLASand ParaWeb work under the premise that there are dedicated, high-performance, computeservers available on the Net, and that clients use the system (either ATLAS or ParaWeb) bysubmitting work in the form of threads to a scheduling server, which takes care of schedulingthreads on the compute servers. It is not clear to me right now whether these systems allow theclients to act as computer servers themselves. (I don't think so.) Also, as far as I know, bothimplementations, use Java applications , for the computer serve, not applets. Another project,Legion, by Grimshaw et al. [22], does not use Java, but is nevertheless intriguing because it setsas its goal the "realization of a worldwide virtual computer". Legion has been around for overa year now, and is being tested in a number of government labs. Klaus Schauser, from UCSB,gave a talk on "Global Computing: A Research Agenda for the Next Millenium" in June 1996at UCSB about a research project whose goals are very similar to those of volunteer computingmentioned in this paper. However, I have no information on this project other than the abstractof his talk [23].A number of other papers involving parallel and distributed computing using the Web and/orJava were presented in HPDC-5 in early August 1996 [24]. However, I have not gotten a copyof the proceedings yet.3.2 Developments in Industry[Talk about RMI, Java Beans, JIT in Netscape 3.0 and Microsoft IE 3.0, ActiveX, JDBC, etc.]3.3 JavaPVM and JPVMTwo interesting PVM-related packages for Java have recently been made available on the Web:JavaPVM, and JPVM. JavaPVM, by David Thurman [25], is an interface which allows Javaprograms to call PVM functions as native methods. This allows one to use Java to writeprograms that can interact with the PVM daemon, and therefore with other PVM programs as5See http://www.cs.ucsb.edu/research/superweb/ and http://cs.nyu.edu/milan/charlotte/5

www.manaraa.com

well. Note, however, that the PVM daemon is not written in Java, and that the PVM methodsare not portable. JPVM, by Adam Ferrari [26], is a library which gives PVM- like functionalityto Java applications. It is "PVM-like" because it is not interoperable with PVM applications.However, it is completely written in Java, so it is portable, unlike JavaPVM. I have not yet triedto use JPVM, but if it can be adapted for use with applets (and not just applications), thenit may become very useful as a preliminary working API for prototype volunteer computingprograms.3.4 WebWorkWebWork is a joint project of Syracuse University, Boston University, and Cooperating SystemsCorporation. It seeks to develop an "extensible world-wide virtual machine (WWVM) modelfor heterogeneous and distributed high performance computation," which it intends to use forsolving Grand and National Challenges. They already have a working RSA factoring demon-stration, and are targetting other problems such as Telemedicine, and Chemistry. As of theirJune 14, 1995 report, [28], which is the latest I could �nd so far, they have not yet used Java inthe ways I have proposed in this paper. Their system works by using CGI, HTTP, HTML, andMIME to allow web servers to exchange data. As far as I can tell, they have not implementedanything where computation is done by clients. In their report, which was written only shortlyafter the initial release of Java, they have expressed interest in using Java. However, it seemsthat they only intend to use it for improving the client's user interface, rather than for doingcomputation on client machines.3.5 RSA FactoringA crude form of volunteer computing (which does not use Java, and still requires human coor-dination and trust) is currently being used to do RSA Factoring on the Web [29, 30]. The ideaof using Java applets for factoring is not a unique one. DigiCrime, a web site which presentsInternet security concerns in a lighthearted manner, alludes to the possiblity of "stealing" peo-ple's processing power by embedding Java applets which do computation such as factoring, intopopular websites [31]. Two students at the University of Washington have actually implementedsuch a system, and have made their source code available for downloading [32].3.6 Work by PCRCThe Parallel Compiler Runtime Consortium (PCRC) has come-up with a preliminary report on"HPCC and Java" [33]. This report presents a number of interesting preliminary ideas aboutusing Java for distributed high-perfomance computing for use with Grand Challenges, NationalChallenges, and "Meta-Challenges".6 The way they plan to use Java is by extending it into adistributed object language. They discuss several possible directions, including ways to make itcompatible with CORBA, the industry standard for distributed object management. They alsopropose some ideas on adding parallel processing support to the Java language, compiler, and6These are "loosely coupled sets of physically distributed instances of Grand or National Challenges," such asdistributed interactive simulation problems 6

www.manaraa.com

interpreter. One interesting idea presented in their report is that of itinerant programs , whichmove from server to server depending on the availability of data and processing power. Thisseems to be very similar to the pool-of-volunteers model discussed above. However, it is notclear from their report whether they have thought of using true volunteers as servers in theirproposed system, and of the security issues involved.3.7 Other Work on Distributed JavaSun Microsystems has been developing NEO and Joe, which seem to provide distributed objectcapabilities to Java [34]. JIDL from Sandia, and HORB from ETL in Japan, are two separateprojects that seek to link Java and CORBA [35, 36]. A group in Australia is experimenting withimplementing MPI on Java [37].3.8 Relation to Proposed Volunteer Computing ProjectIt is clear that this volunteer computing project would not be the �rst attempt to use Java forparallel and distributed computing on the World-Wide-Web. However, I think that this �eldis still relatively new, and there is still a lot of space to do original and pioneering work. Inparticular, I imagine this project's place to be somewhere between the early prototypes suchas WebWork and University of Washington's Java RSA factoring project, and the more generaland ambitious goal of using Java for distributed object computing. This project will improveon the e�orts done by the early prototypes (possibly leveraging from their results), in order togenerate a parallel processing system that is bigger in terms of nodes it can handle, and moreexible in terms of parallel algorithms it can support. It does not aim to produce a systemexible enough to handle the truly distributed object- oriented systems that PCRC and othersare targetting, but at the same time, it can produce results which would be of interest to theseresearch groups.
7

www.manaraa.com

4 Proposed Work4.1 ObjectiveThe objective of this thesis is to expose and investigate the issues and problems involved involunteer computing by developing a usable volunteer computing programming system andusing it to create applications of various types. Some of the forseeable issues and problems tobe addressed are discussed in the following sections.4.2 Adaptive Parallelism� Computation must not depend on the knowledge of the number of nodes, the architectureof the nodes, or the structure of the interconnection network.{ Programming interface.{ Performance must be reasonable despite nodes dropping in and out.� Possible Approaches{ Cilk (ATLAS){ Linda / Dataow (Javelin, WWWinda, Jada){ Eager Scheduling (Charlotte, my �rst demo){ Others?4.3 Fault-Tolerance� stopping faults { fall under adaptive parallelism.� Byzantine faults { the harder problem{ malicious� intentional sabotage� cheating by laziness (in paid volunteer systems)� spoo�ng{ not malicious� faulty processors (e.g. Pentium)� faulty network links (losses, corruption, etc.)� Possible Approaches{ Checksums and Digital Signatures{ Encrypted Computation� worker does not know what it is computing so cannot alter computation� also useful for preventing spying in market systems8

www.manaraa.com

{ Redundancy and Randomized Algorithms� TMR-type redundancy� Spot-checking { for each problem, there is probability P that the work will berechecked. If you are found to be wrong, then you're in big trouble.{ Blacklisting { nodes or domains identi�ed as faulty a certain number of times will beignored and not allowed to join in computation.{ Problem Choice� Search problems with easily-veri�able results.� Problems that do not require 100% accuracy (e.g., graphics, video, sound, etc.)4.4 Applications� Finding Good Application Domains{ Some are better suited to volunteer computing that others{ Probably good� Search problems (cryptography, number theory, etc.)� Graphics (rendering, Mandelbrot-like graphics, etc.){ Probably bad� Scienti�c computations which are �ne-grain and need high accuracy{ Other interesting possibilities� Computer Chess (i.e. Kasparov vs. The Whole World)� Distributed Simulations (e.g., tra�c) { nice to do with remote objects!{ Attracting and motivating people to join computations is also an issue.� Economic Model (Applications for the Real World){ True (altruistic) volunteers{ Forced volunteers� all volunteers are \owned" by same group� useful within universities or companies� network-of-information-appliances{ Paid volunteers� individual compensation (money/credits, discounts, lottery, promos, etc.)� market system (cite Javelin)4.5 Other (Secondary?) Issues� Programming Interface� User-Interface� Congestion and Scalability� Hidden Costs 9

www.manaraa.com

5 Schedule6 Conclusion

10

www.manaraa.com

References[1] Al Geist et al. PVM: Parallel Virtual Machine: A User's Guide and Tutorial for NetworkedParallelism. MIT Press, 1994.URL: http://www.netlib.org/pvm3/book/pvm-book.html[2] IBM Corporation. IBM Intranet and Client/Server Solution|Deep Blue Versus Kasparovon the Internet. HTML document, Sept. 1996.URL: http://www.csc.ibm.com/advisor/provensolutions/pcid/380e 362.html[3] Steven Levy. Wisecrackers. Wired, Issue 4.03, March 1996.URL: http://www.hotwired.com/wired/4.03/features/crackers.html[4] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley Pub-lishing Company, Inc., 1996.URL: http://www.aw.com/cp/arnold-gosling.html[5] Sun Microsystems, Inc. Remote Method Invocation. HTML document, Sept. 1996.URL: http://chatsubo.javasoft.com/current/rmi/index.html[6] Sun Microsystems, Inc. JDK 1.1 Preview. HTML document, Sept. 1996.URL: http://java.sun.com/products/JDK/1.1/designspecs/index.html[7] Ann Wollrath, Sun Microsystems, Inc., Personal communication, Java Day at MIT, Sept.20, 1996.[8] University of Illinois at Urbana-Champaign. Grand and National Challenges. HTML doc-ument, Oct. 1995.URL: http://www.ncsa.uiuc.edu/Cyberia/MetaComp/GrandNat.html[9] RSA Data Security. RSA Factoring Challenge. HTML document.URL: http://www.rsa.com/factor/chalenge.htm[10] Charles Perkins. Java Unleashed, chapter 39. Sams.net Publishing, 1996.[11] Pendragon Software. The Java Performance Report. HTML document, July 1996.URL: http://www.webfayre.com/pendragon/jpr/index.html[12] Mark LaDue. Hostile Applets Home Page. HTML document, June 1996.URL: http://www.math.gatech.edu/~mladue/HostileApplets.html,[13] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From HotJava toNetscape and Beyond, in Proceedings of the IEEE Symposium on Security and Privacy,May 1996.URL: http://www.cs.princeton.edu/sip/Publications.html[14] Douglas Kramer. The Java Platform: A White Paper. Sun Microsystems, Inc. HTMLDocument, Aug. 1996.URL: http://java.sun.com/doc/white papers.html[15] Bill Gates. The Road Ahead. Viking, a division of Penguin Books USA Inc., 1995.11

www.manaraa.com

[16] Nicholas Negroponte. Being Digital. Vintage Books, a division of Random House, Inc., 1995.[17] Nancy A. Lynch. Distributed Algorithms. Morgan Kau�man Publishers, Inc., 1996.[18] Proceedings of the Seventh ACM SIGOPS European Workshop: Systems Support for World-wide Applications. ACM Special Interest Group on Operating Systems. Sept. 9-11, 1996,Connemara Ireland.[19] J. Eric Baldeschwieler, Robert D. Blumofe, and Eric A. Brewer. ATLAS: An Infrastructurefor Global Computing, in Proceedings of the Seventh ACM SIGOPS European Workshop:Systems Support for Worldwide Applications, Sept. 1996.[20] Blumofe, et al. Cilk: An E�cient Multithreaded Runtime System, in Proceedings of the 5thACM SIGPLAN Symposium on Principles of Parallel Programming (PPOPP '95), July19-21,1995, Santa Barbara California, pp. 207-216.URL: http://theory.lcs.mit.edu/~cilk/[21] Tim Brecht, et al. ParaWeb: Towards World-Wide Supercomputing, in Proceedings of theSeventh ACM SIGOPS European Workshop: Systems Support for Worldwide Applications,Sept. 1996.[22] Andrew S. Grimshaw and William A. Wulf. Legion: Flexible Support for Wide-Area Com-puting, in in Proceedings of the Seventh ACM SIGOPS European Workshop: Systems Sup-port for Worldwide Applications, Sept. 1996.URL: http://www.cs.virginia.edu/~legion/[23] Klaus E. Schauser. Global Computing: A Research Agenda for the Next Millenium. Talkgiven at U.C. Santa Barbara, on June 3, 1996.URL: http://www.cs.ucsb.edu/colloquia/Abstracts/Schauser.html[24] Proceedings of the Fifth IEEE International Symposium on High Performance DistributedComputing, Aug. 9-11, 1996, Syracuse, New York.URL: http://www.npac.syr.edu/projects/hpdc[25] David A. Thurman. JavaPVM: The Java to PVM Interface. HTML Document, June 1996.URL: http://homer.isye.gatech.edu/chmsr/JavaPVM/[26] Adam Ferrari. JPVM: The Java Parallel Virtual Machine. HTML document, June 1996.URL: http://www.cs.virginia.edu/~ajf2j/jpvm.html[27] Northeast Parallel Architectures Center. Web-based HPCC at NPAC. HTML document,July 1996.URL: http://www.npac.syr.edu/projects/webbasedhpcc/index.html[28] Geo�rey Fox et al. WebWork: Integrated Programming Environment Tools for National andGrand Challenges. Technical Report SCCS-715, Northeast Parallel Architectures Center,June 1995.URL: http://www.npac.syr.edu/projects/webbasedhpcc/index.html[29] Cooperating Systems Corporation. FAFNER: Factoring via Network-Enabled Recursion.Perl-generated HTML document, 1996.URL: http://www.cooperate.com/cgi-bin/FAFNER/factor.pl12

www.manaraa.com

[30] Northeast Parallel Architectures Center. RSA Factoring-By-Web Project. HTML Docu-ment, Jan. 1996.URL: http://www.npac.syr.edu/factoring.html[31] DigiCrime Computational Services via Java. HTML Document, June, 1996.URL: http://www.digicrime.com/java.html[32] Geo� Voelker and Dylan McNamee. The Java Factoring Project. HTML document withJava Alpha version applets, Sept. 1995.URL: http://www.cs.washington.edu/homes/dylan/ContestEntry.html[33] Parallel Compiler Runtime Consortium. HPCC and Java|A Preliminary Report. HTMLDocument, May, 1996.URL: http://www.npac.syr.edu/users/gcf/hpjava.html[34] Sun Microsystems, Inc. Sunsoft NEO Product Family. HTML document, Aug. 1996.URL: http://www.sun.com/sunsoft/neo/[35] Sandia National Labs. JIDL: The CORBA IDL Compiler for Java. HTML Document, June1996.URL: http://herzberg.ca.sandia.gov/jidl/[36] Hirano Satoshi. HORB home page. HTML Document, Sept. 1996.URL: http://ring.etl.go.jp/openlab/horb/[37] Sam Taylor. Prototype Java-MPI Package. HTML Document, April 1996.URL: http://cisr.anu.edu.au/~sam/java/java mpi prototype.html

13

